

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: NUMERICAL METHODS ANDTRANSFORMS (20HS0834)

Year & Sem: II-B.Tech & I-Sem

Branches: B.Tech-ECE **Regulation**: R20

UNIT -I

NUMERICAL SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS & INTERPOLATION

1	Find a positive root of the equation $x^3 - x - 1 = 0$ by Bisection method.			[L1][CO2]	[12M]		
2	Find real root of the equation $3x = e^x$ by Bisection method.				[L1][CO1]	[12M]	
3	Find out the square root of 25 given $x_0 = 2.0$, $x_1 = 7.0$ using Bisection method.				[L1][CO2]	[12M]	
4	Find a real root of the equation $xe^x - \cos x = 0$ using Newton – Raphson method.				[L1][CO1]	[12M]	
5	Using Newton-Raphson method (i) Find square root of 28. (ii) Find cube root of 15.				[L3][CO2]	[12M]	
6	a) Using Newton-Raphson method, find reciprocal of 12.			[L3][CO2]	[6M]		
	b) Find a real root of the equation $xtanx+1=0$ using Newton – Raphson method.			[L1][CO1]	[6M]		
7	Find the root of the equation $x \log_{10}(x)=1.2$ using False position method.				[L1][CO1]	[12M]	
8	Find the root of the equation $x e^{x} = 2$ using Regula-falsi method.				[L1][CO1]	[12M]	
9	From the following table values of x and $y=tan x$. Interpolate the values of y when $x=0.12$ and $x=0.28$.						
	x 0.10	0.15	0.20	0.25	0.30	[L5][CO1]	[12M]
	y 0.1003 0.	.1511	0.2027	0.2553	0.3093		
10	a) Using Newton's forward into	erpolation	formula	and the giv	ven table of values		
	x 1.1	1.3	1.5	1.7	1.9	[L3][CO1]	[6M]
		0.69	1.25	1.89	2.61		[OIVI]
	Obtain the value of $f(x)$ when $x=1.4$.						
	b) Use Newton's backward interpolation formula to find f(32) given f(25)=0.2707, f(30)=0.3027, f(35)=0.3386, f(40)=0.3794.				[L3][CO1]	[6M]	

Q.P. Code: 20HS0834

UNIT -II

NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS & NUMERICAL INTEGRATION

1	Tabulate y(0.1), y(0.2) and y(0.3) using Taylor's series method given that $y^1 = y^2 + x$ and y(0) = 1.	[L6][CO3]	[12M]
2	Evaluate by Taylor's series method, find an approximate value of y at x=0.1 and 0.2 for the D.E $y^{11} - x(y^1)^2 + y^2 = 0$; $y(0) = 1$, $y^1(0) = 0$.		[12M]
3	a) Solve $y^1 = x + y$, given $y(1)=0$ find $y(1.1)$ and $y(1.2)$ by Taylor's series method.		[6M]
	b) Solve by Euler's method $\frac{dy}{dx} = \frac{2y}{x}$ given y(1)=2 and find y(2).	[L6][CO3]	[6M]
4	Using Euler's method, find an approximate value of y corresponding to x=0.3 given that $\frac{dy}{dx} = x + y$ and y=1 when x=0, taking step size h=0.1.	[L1][CO3]	[12M]
5	Using modified Euler's method find $y(0.2)$ and $y(0.4)$. Given $y^1 = y + e^x$, $y(0)=0$.	[L3][CO3]	[12M]
6	a) Solve by Euler's method $y^1 = y^2 + x$, $y(0)=1$ and find $y(0.1)$ and $y(0.2)$.	[L3][CO3]	[6M]
	b) Using Runge – Kutta method of fourth order, compute $y(0.2)$ from $y^1 = xy$, $y(0)=1$ and taking h=0.2.	[L3][CO3]	[6M]
7	Using R-K method of 4 th order, solve $\frac{dy}{dx} = x^2 - y$, $y(0)=1$. Find $y(0.1)$ and $y(0.2)$.	[L3][CO3]	[12M]
8	Using R-K method of 4 th order find y(0.1) and y(0.2) given that $\frac{dy}{dx} = x + y$, y(0)=1.	[L3][CO3]	[12M]
9	Evaluate $\int_0^1 \frac{1}{1+x} dx$ (i) by Trapezoidal rule and Simpson's $\frac{1}{3}$ rule. (ii) Using Simpson's $\frac{3}{8}$ rule and compare the result with actual value.	[L5][CO3]	[12M]
10	a) Compute $\int_{0}^{4} e^{x} dx$ by Simpson's $\frac{3}{8}$ rule with 12 sub divisions.	[L5][CO3]	[6M]
	b) Compute $\int_0^{\pi/2} \sin x dx$ using Trapezoidal rule, Simpson's $\frac{1}{3}$ rule and compare with exact value.	[L5][CO3]	[6M]

UNIT –III LAPLACE TRANSFORMS

1	a) Find the Laplace transform of $f(t) = e^{3t} - 2e^{-2t} + \sin 2t + \cos 3t + \sinh 3t - 2\cosh 4t + 9.$	[L1][CO4]	[6M]
	b) Find the Laplace transform of $f(t) = \cosh at \sin bt$	[L1][CO4]	[6M]
2	a) Find the Laplace transform of $f(t) = \left(\sqrt{t} + \frac{1}{\sqrt{t}}\right)^3$.	[L1][CO4]	[6M]
	b) Find the Laplace transform of e ^{4t} sin2t cost.	[L1][CO4]	[6M]
3	a) Find the Laplace transform of $f(t) = \cos t \cdot \cos 2t \cdot \cos 3t$.	[L1][CO4]	[6M]
	b) Find $L\{e^{-4t}\sinh 3t\}$ using change of scale property.	[L3][CO4]	[6M]
4	a) Find the Laplace transform of $t^2e^{2t}\sin 3t$.	[L1][CO4]	[6M]
	b) Find the Laplace transform of $\frac{1-\cos at}{t}$	[L1][CO4]	[6M]
5	a) Find the Laplace transform of $\int_{0}^{t} e^{-t} \cos t dt$.	[L1][CO4]	[6M]
	b) Find the Laplace transform of $e^{-4t} \int_{0}^{t} \frac{\sin 3t}{t} dt$.	[L1][CO4]	[6M]
6	a) Show that $\int_{0}^{\infty} t^2 e^{-4t}$. sin $2t dt = \frac{11}{500}$, Using Laplace transform.	[L2][CO4]	[6M]
	b) Using Laplace transform, evaluate $\int_{0}^{\infty} \frac{\cos at - \cos bt}{t} dt$.	[L5][CO4]	[6M]
7	a) Find $L^{-1} \left\{ \frac{3s-2}{s^2-4s+20} \right\}$ by using first shifting theorem.	[L1][CO4]	[6M]
	b) Find $L^{-1} \left\{ \log \left(\frac{s-a}{s-b} \right) \right\}$	[L1][CO4]	[6M]
8	a) Find $L^{-1}\left\{\frac{1}{\left(s^2+5^2\right)^2}\right\}$, using Convolution theorem.	[L1][CO4]	[6M]
	b) Find $L^{-1}\left\{\frac{s^2}{\left(s^2+4\right)\left(s^2+25\right)}\right\}$, using Convolution theorem.	[L1][CO4]	[6M]
9	a) Find the Inverse Laplace transform of $\frac{1}{s(s^2 + a^2)}$	[L1][CO4]	[6M]
	b) Find $L^{-1} \left\{ s \log \left(\frac{s-1}{s+1} \right) \right\}$	[L1][CO4]	[6M]
10	a) Using Convolution theorem, Find $L^{-1}\left\{\frac{s}{(s^2+a^2)^2}\right\}$	[L3][CO4]	[6 M]
	b) Using Convolution theorem, Find $L^{-1}\left\{\frac{1}{(s+a)(s+b)}\right\}$	[L3][CO4]	[6 M]

UNIT –IV APPLICATIONS OF LAPLACE TRANSFORMS & FOURIER SERIES

1	a) Using Laplace transform method to solve $y^1 - y = t$, $y(0) = 1$.	[L3][CO5]	[6M]
	b) Solve the D.E. $\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + x = 3te^{-t}$ using Laplace Transform given that $x(0) = 4$; $\frac{dx}{dt} = 0.at, t = 0$	[L3][CO5]	[6M]
2	Using Laplace transform method to solve $y^{11} - 3y^1 + 2y = 4t + e^{3t}$ where $y(0) = 1, y^1(0) = 1$.	[L6][CO5]	[12M]
3	a) Obtain the Fourier series expansion of $f(x) = x^2$ in the interval $(0,2\pi)$.	[L3][CO5]	[6M]
	b) Obtain the Fourier series expansion of $f(x) = (x - x^2)$ in the interval $[-\pi, \pi]$. Hence show that $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} - \cdots - \cdots = \frac{\pi^2}{12}$.	[L3][CO5]	[6M]
4	a) Obtain the Fourier series expansion of $f(x)=(\pi-x)^2$ in $0 < x < 2\pi$ and deduce that $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} = \frac{\pi^2}{6}$.	[L3][CO5]	[6M]
	b) Find the Fourier series for the function $f(x) = x$ in $-\pi < x < \pi$.	[L1][CO5]	[6M]
5	Find a Fourier series to represent the function $f(x) = e^x$ for $-\pi < x < \pi$ and hence derive a series for $\frac{\pi}{\sinh \pi}$.	[L1][CO5]	[12M]
6	Find the Fourier series to represent the function $f(x) = x^2$ for $-\pi < x < \pi$ and hence show that (i) $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} - \dots - \frac{\pi^2}{12}$. (ii) $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} - \dots - \frac{\pi^2}{6}$. (iii) $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} - \dots - \frac{\pi^2}{8}$.	[L1][CO5]	[12M]
7	a) If $f(x) = \sin x $, expand $f(x)$ as a Fourier series in the interval $(-\pi, \pi)$.	[L2][CO5]	[6M]
	b) Find the half range cosine series for $f(x) = x$ in the interval $0 \le x \le \pi$.	[L1][CO5]	[6M]
8	Expand the function $f(x) = x $ in $-\pi < x < \pi$ as a Fourier series and deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} = \frac{\pi^2}{8}$.	[L2][CO5]	[12M]
9	a) Expand $f(x) = e^{-x}$ as a fourier series in the interval $(-1,1)$.	[L2][CO5]	[6M]
	b) Expand $f(x) = x $ as a fourier series in the interval $(-2,2)$.	[L2][CO5]	[6M]
10	a) Find the half range sine series expansion of $f(x) = x^2$ when $0 < x < 4$.	[L1][CO5]	[6M]
	b) Find the half range cosine series expansion of $f(x) = x(2-x)$ in $0 \le x \le 2$.	[L1][CO5]	[6M]

Q.P. Code: 20HS0834

UNIT –V FOURIER TRANSFORMS

1	Using Fourier integral theorem, Show that		
	$e^{-ax} - e^{-bx} = \frac{2(b^2 - a^2)}{\pi} \int_{0}^{\infty} \frac{x \sin x dx}{(x^2 + a^2)(x^2 + b^2)}, \ a, b > 0$	[L3][CO6]	[12M]
2	Find the Fourier transform of $f(x) = \begin{cases} 1; x < a \\ 0, x > a \end{cases}$ and hence evaluate i) $\int_{-\infty}^{\infty} \frac{\sin p \cos px}{p} dp$ ii) $\int_{-\infty}^{\infty} \frac{\sin p}{p} dp$ iii) $\int_{0}^{\infty} \frac{\sin p}{p} dp$	[L1][CO6]	[12M]
3	Find the Fourier transform of $f(x) = \begin{cases} a^2 - x^2, x < a \\ 0, x > a > 0 \end{cases}$. Hence show that $\int_0^\infty \frac{\sin x - x \cos x}{x^3} dx = \frac{\pi}{4}.$	[L1][CO6]	[12M]
4	a) Find the Fourier transform of $f(x) = e^{-\frac{x^2}{2}}, -\infty < x < \infty$	[L1][CO6]	[6M]
	b) If F(p) is the complex Fourier transform of f(x), then prove that the complex Fourier transform of $f(x) = cosax$ is $\frac{1}{2}[F(p+a)+F(p-a)]$		[6M]
5	a) Find the Fourier cosine transform of $f(x)$ defined by $f(x) = \begin{cases} \cos x & \text{; } 0 < x < a \\ 0 & \text{; } x \ge a \end{cases}$		[6M]
	b) If F(P) is the complex Fourier transform of $f(x)$, then prove that the complex Fourier transform of $F\{f(x-a)\}=e^{ipa}$. $F(P)$.	[L5][CO6]	[6M]
6	Find the Fourier sine and cosine transforms of $f(x) = \frac{e^{-ax}}{x}$ and deduce that $\int_0^\infty \frac{e^{-ax} - e^{-bx}}{x} \sin px dx = \tan^{-1} \left(\frac{p}{a}\right) - \tan^{-1} \left(\frac{p}{b}\right).$	[L1][CO6]	[12M]
7	Find the Fourier sine and cosine transforms of $f(x) = e^{-ax}$, $a > 0$ and hence deduce the integrals (i) $\int_{0}^{\infty} \frac{p \sin px}{a^{2} + p^{2}} dp$ (ii) $\int_{0}^{\infty} \frac{\cos px}{a^{2} + p^{2}} dp$		[12M]
8	a) Prove that F[$x^n f(x)$] = $(-i)^n \frac{d^n}{dp^n} [F(p)]$	[L5][CO6]	[6M]
	b) Prove that $F_s \{ x f(x) \} = -\frac{d}{dp} [F_c(p)]$	[L5][CO6]	[6M]
9	a) Find the Fourier cosine transform of $e^{-ax}\cos ax$, $a > 0$	[L1][CO6]	[6M]
	b) Find the Fourier cosine transform of $f(x) = \begin{cases} x, & \text{for } 0 < x < 1 \\ 2 - x, & \text{for } 1 < x < 2 \\ 0, & \text{for } x > 2 \end{cases}$	[L1][CO6]	[6M]
10	Find the finite Fourier sine and cosine transform of $f(x)$ defined by $f(x) = 2x$ where $0 < x < 2\pi$.	[L1][CO6]	[12M]

Prepared by: Dept. of Mathematics